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Abstract

The increase in delays in the National Airspace System 
(NAS) has been the subject of several studies in recent 
years. These reports contain delay statistics over the 
entire NAS, along with some data specific to individual 
airports, however, a comprehensive characterization 
and comparison of the delay distributions is absent.  
Historical delay data for these airports are summarized. 
The various causal factors related to aircraft, airline 
operations, change of procedures and traffic volume are 
also discussed.  Motivated by the desire to improve the 
accuracy of demand prediction in enroute sectors and at 
airports through probabilistic delay forecasting, this 
paper analyzes departure and arrival data for ten major 
airports in the United States that experience large 
volumes of traffic and significant delays. To enable 
such an analysis, several data fields for every aircraft 
departing from or arriving at these ten airports in a 21-
day period were extracted from the Post Operations 
Evaluation Tool (POET) database. Distributions that 
show the probability of a certain delay time for a given 
aircraft were created. These delay-time probability 
density functions were modeled using Normal and 
Poisson distributions with the mean and standard 
deviations derived from the raw data. The models were 
then improved by adjusting the mean and standard 
deviation values via a least squares method designed to 
minimize the fit error between the raw distribution and 
the model. It is shown that departure delay is better 
modeled using a Poisson distribution, while the enroute 
and arrival delays fit the Normal distribution better. 
Finally, correlation between the number of departures, 
number of arrivals and departure delays is examined 
from a time-series modeling perspective.

1. Introduction

An application of the Enhanced Traffic Management 
System (ETMS) is to provide an estimate of traffic 
demand at sectors and airports. The demand is 
computed based on airline schedule data, historical 
traffic data, filed flight plans, and radar track data1. 
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Host computer systems at the various Air Route Traffic 
Control Centers (ARTCC’s) provide flight plan and 
radar derived time-stamped track positions to the 
ETMS. These data are used with flight plan-based 
trajectory models to predict the locations of both 
airborne aircraft and aircraft that are scheduled to 
depart. The forecast positions are used to project 
demand at airports, sectors, and fixes. For aircraft that 
are scheduled to depart in the future, departure time 
uncertainty is the major cause of demand prediction 
error; therefore increased departure time accuracy will 
directly increase the accuracy of such predictions. This 
study is motivated by the desire to improve the 
forecasting accuracy of departure times with a 
probabilistic delay time model.  

Since traffic management decisions are influenced by 
the predicted demand, better demand forecasting is 
desirable. There have been attempts to improve 
forecasting by using alternative trajectory prediction 
methods in systems that are currently being developed 
such as the FAA/CAASD Collaborative Routing 
Coordination Tools (CRCT) program, NASA Future 
ATM Concepts Evaluation Tool (FACET), and the 
NASA/FAA Center TRACON Automation System 
(CTAS) based Traffic Flow Automation System 
(TFAS).2-4 Masalonis, et. al.,5 summarizes the results of 
preliminary analysis of CRCT traffic prediction 
performance compared to the ETMS. The study reveals 
improvements in demand forecasting are possible over 
ETMS by modeling airspace restrictions. However, the 
predictability varies according to factors such as the 
type of sector and time horizon, irrespective of the 
trajectory prediction engine used. Similar trends have 
also been reported in preliminary studies using TFAS 
and FACET trajectory prediction methods.4,6,7 Clayton 
and Murphy4,6 show TFAS is better able to predict the 
trajectories of arrival traffic than ETMS as it uses a 
detailed adaptation near the airport, has improved 
modeling of restrictions at the meter fixes, and uses a 
four-dimensional trajectory prediction algorithm. A 
slight improvement is also seen for departure traffic. 
Compared to the prediction accuracy of active flights, 
the prediction accuracy of proposed flights was found 
to be poor due to the departure time uncertainty of 
proposed flights.     
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From a search of the literature,4-7 one may conclude that 
to characterize the uncertainty of traffic demand 
forecasts, departure uncertainty must be modeled. 
Meyn8 describes a probabilistic method for air traffic 
demand forecasting using a probability distribution of 
an aircraft’s location about a nominal location or as a 
distribution in time about a reference time (i.e. the 
sector boundary crossing time). The stochastic 
approach may be beneficial even if early and accurate 
intent information is provided because of the likelihood 
that unanticipated events may prevent departure at the 
intended time. Such events include unscheduled 
maintenance, baggage handling problems and passenger 
loading issues, and often cause delay in departure from 
the gate.

The objective of this paper is to analyze departure and 
arrival data for ten major airports in the United States 
and characterize the delay distributions for traffic 
forecasting algorithms. Global delay statistics for the 
entire National Airspace System (NAS) and for major 
airports in the U.S., reported by the various studies, are 
discussed in Section 2. Collection of airport arrival and 
departure data is described in Section 3, and delay 
metrics are formulated in Section 4. The numerical 
values of these metrics are also provided here in tabular 
form. Additionally, the aggregate trends are examined 
as a function of the days of the week. Section 4 
describes modeling of departure, enroute and arrival 
delays using Normal and Poisson distributions. Finally, 
the conclusions are provided in Section 5. 

2. Delay Statistics

Causes of delays in the NAS have been the subject of 
several studies in recent years.9-12 These reports contain 
delay statistics over the entire NAS along with some 
data specific to individual airports.  They do not 
provide a comprehensive breakdown and analysis of the 
arrival, departure, and enroute delays for aircraft 
operations from major airports. This section will define 
the different regimes in which delays occur, give basic 
statistics on their magnitudes and frequencies, and offer 
some explanations as to why they arise.

There is no industry-wide standard definition or 
measure of delay.  Each organization involved in this 
area tailors the definition to suit the purpose at hand, 
however there are standard and precisely-defined events 
that can be used for this purpose: Out, Off, On, and In 
(OOOI) times. Out time refers to the time of pushback 
(specifically when the parking brake is released). Off 
time refers to the takeoff time at which weight is no 
longer borne on the landing gear. On time is associated 
with the touchdown time, and the In time is related to 
the moment the parking brake is applied at the gate. 

These times are recorded and reported by the respective 
airline, and their definitions will be used for delay and 
transit time computations in this paper.

The Federal Aviation Administration (FAA) 
categorizes delays into gate delay, taxi-out delay, 
enroute (in flight) delay, terminal delay and taxi-in 
delay. Each category of delay arises when the aircraft 
requires more time in that regime than was scheduled. 
For example, terminal delays result when aircraft are 
held in holding patterns close to the airport prior to 
landing. Due to business reasons, air carriers interpret 
these delay definitions somewhat differently. For 
instance, some air carriers report arrival at the gate 
when the parking brake is applied, while others use the 
opening of the passenger door as the gate arrival event.  
Although the time difference between these events is 
small, it can nevertheless be the deciding factor in 
whether a flight is recorded as on time or delayed.

Two government agencies keep air traffic delay 
statistics in the United States. The Bureau of 
Transportation Statistics (BTS) compiles delay data for 
the benefit of passengers. They define a delayed flight 
as one in which the aircraft fails to release its parking 
brake less than 15 minutes after the scheduled departure 
time.  The FAA is more interested in delays indicating 
surface movement inefficiencies and will record a delay 
when an aircraft requires 15 minutes or longer over the 
standard taxi-out or taxi-in time (Out to Off time, or On
to In time, respectively). 

In order to understand historical delay data, such as 
those maintained by the BTS and the FAA, it is useful 
to consider the phenomenon of scheduled delay.  As 
congestion in the NAS increased in the 1990’s, airlines 
recognized the value of minimizing the incidence of 
delays as recorded and reported to the public.  The 
simplest way of reducing delays was not to increase the 
speed and efficiency of the system to meet the 
scheduled time, but to push back the scheduled time to 
absorb the system delays.  As a result, one estimate put 
the number of scheduled delays that were built into 
airline schedules in 1999 at 22.5 million minutes.13 The 
number of arrival delays reported by BTS would have 
been nearly 25% higher in 1999 if airlines had 
maintained their 1988 schedules.

An audit report by the Department of Transportation
(DOT) states that the FAA reported an average 
departure delay time increase from 41.1 minutes in 
1998 to 43.5 minutes in 1999.13 During the same 
period, the BTS reported a similar rise from 49.3 to 
50.5 minutes. The difference in reported delay times are 
due to the alternative ways, defined above, in which the 
FAA and the BTS track delays. Average delay times for 
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ten major U.S. airports, which are listed in Table 1, are 
summarized in Table 2. The delay times reported in 
Table 2 include departure, enroute and arrival delays.

Table 3 shows the average percentage of delayed 
aircraft for each of the ten airports in Table 1, broken 
down by departures and arrivals, for the twelve months 
ending in October 2001.14 From Table 3, it is evident 
that the percentages of delayed departures and arrivals 
are similar in some cases, suggesting that delay is 
frequently incurred on departure and carries through to 
arrival. The percentage of delayed departures or arrivals 
in 2001 was lower than in 2000, which was a record 
year for all types of delays compared to the previous 
level set in 1990.15

The top ten airports with the most arrival delays in 
2000, as defined by the inspector general, saw an 
increase of 24.2% since 1999.16 The FAA reported that 
over the entire NAS in 2000, 27.5% of all aircraft were 
delayed, canceled, or diverted.16

In summary, air traffic delays have been on a steady 
rise since the 1990s. A statement by the DOT16 notes 
that according to BTS, the number of delayed aircraft 
has increased by 30% between 1995 and 2000. The 

report also shows that using FAA statistics, the delays 
increased by 90% during the same period, and flight 
cancellations soared 104 percent. The annual cost of 
delays in 1999 was just over 3.2 billion dollars.  This 
compares to roughly 7.85 billion dollars in net profit for 
all airlines, representing a 27% drain on financial 
resources.13

Studies have identified the stages of flight in which 
delays occur and the causal factors that result in delays. 
For example, the DOT16 classifies delays as gate delay, 
taxi-out delay, airborne delay and taxi-in delay. Figure 
1 shows their contribution to the total delay. Observe 
from the figure that 84% of all delays occur on the 
ground (gate, taxi-out, taxi-in), out of which 76% are 
prior to takeoff (gate, taxi-out), suggesting that focusing 
on ground delay prediction will have the most impact 
on improving forecasting algorithms.16 Surface 
movement inefficiencies are not the only reason for 
delays on the ground. Ground delay programs, enroute 
capacity constraints, aircraft maintenance issues, 
ground services (fuel, baggage and catering), customer 
service issues, late aircraft/crew arrival, and poor 
weather conditions elsewhere all contribute to surface 

Table 1. Major U. S. airports used in study.

ATL Atlanta

BOS  Boston

DFW  Dallas/Fort Worth

EWR  Newark

JFK  New York - John F. Kennedy

LAX  Los Angeles

LGA  New York – La Guardia

ORD  Chicago O'Hare

SFO  San Francisco

STL  St. Louis

Table 2.  Average duration of BTS-reported delay 
times in minutes by airport and year.13

Airport 1995 1999

ATL 28.87 37.67

BOS 42.84 43.96

DFW 34.18 38.70

EWR 45.73 49.98

JFK 37.98 36.44

LAX 36.10 37.79

LGA 31.32 39.95

ORD 47.30 55.83

SFO 35.62 52.96

STL 38.39 48.12

Table 3.  Percentage of delayed aircraft with respect 
to total aircraft, Nov 00 to Oct 01.14

Airport Departures Arrivals

ATL 13.7 8.6

BOS 20.0 13.4

DFW 21.1 17.1

EWR 9.9 10.3

JFK 24.3 16.5

LAX 14.7 16.0

LGA 13.6 12.5

ORD 19.3 19.2

SFO 18.9 25.0

STL 14.5 14.5

Fig. 1  Distribution of delays by phase of flight. 16
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delays.16 The impact of the most common and important 
of these factors will be discussed.

Weather is the main contributor to delays in the air 
traffic control (ATC) system as shown in Fig. 2. Traffic 
volume delays are caused by an arrival/departure 
demand that exceeds the nominal airport arrival rate 
(AAR)/airport departure rate (ADR). The demand may 
also exceed the airport capacity if AAR and ADR are 
reduced due to weather conditions at the airport, 
equipment failure or runway closure. ATC equipment 
outages are also responsible for a small number of 
delays.

In addition to the above-listed causal factors for delays, 
introduction of new equipment and operational 
procedures have been known to contribute to the 
delays. For example, Fig. 3 shows that introduction of 
the Display System Replacement (DSR) program, 
which is designed to upgrade controller’s displays, 
caused 21% of the increase in delay in 1999 since it 
required the controllers to learn a new system.

Restrictions on Land And Hold Short Operations 
(LAHSO), a change of procedure, also contributed to an 
increase in delay. LAHSO is designed to permit 
simultaneous use of intersecting runways. The landing 
aircraft is instructed to stop just before the intersecting 
runway so that another aircraft may use it at the same 
time.  To ensure safe operations, the FAA added 
restrictions to this policy in 1999, which effectively 
reduced the capacity of many large airports and 
increased delay in the NAS.13

Delays may also be attributed to airline operations 
procedures.13 The first contributing factor is the 
organization of operations into a hub and spoke system 
by the airlines. The hub-spoke operations cause banks 

of aircraft to arrive together and then depart together. 
This type of operation is desirable from an airline point 
of view because it allows the passengers, aircraft and 
crew to be rerouted to various destinations. They also 
provide airlines the opportunity to consolidate 
passengers into some flights while canceling others. 
The main drawback of this procedure is that the airport 
experiences arrival and departure rushes with little 
resource utilization in the interim periods. The second 
factor is increased use of regional jets instead of 
turboprops.  The turboprops required a smaller runway, 
climbed more slowly and flew at lower altitudes than 
the jets. These characteristics allowed them to be 
naturally separated from the higher altitude jet traffic. 
Increased numbers of smaller jets, which operate in the 
same flight regime as the larger jets, means more 
aircraft competing for the same airspace, thereby 
increasing congestion and delays.

3. Data Collection 

Ten major U. S. airports that experience significant 
delays were selected for the study of departure, enroute 
and arrival delays.  These major hub airports, listed in 
Table 1, are responsible for a significant portion of the 
traffic in the NAS and they also bear the burden of a 
large portion of the delays. 

The data needed for the analysis of delays for these 
airports were extracted using the Post Operations 
Evaluation Tool (POET) for the three-week period 
spanning October 14, 2001 to November 3, 2001. The 
three-week duration was chosen to have enough data 
for statistically meaningful results and to make possible 
analysis of the data as a function of days of the week.

POET is an analysis system developed under the FAA's 
Collaborative Decision Making (CDM) program. Since 
it is built on top of a relational database, users can 
easily query, filter, and visualize the flight information 
contained in the ETMS data archive using a variety of 

Fig. 2  Distribution of arrival and departure 
delay causes in 2000.15

Fig. 3  Distribution of reasons for increases in 
delay in 1999.13



American Institute of Aeronautics and Astronautics
5

interactive charts and tables. Analysis results can be 
aggregated by departure and arrival airports, filed 
arrival fixes, departure and arrival times, National 
Route Program (NRP)/non-NRP status, departure and 
arrival centers, and by the class of the user, among 
other functionalities. The POET server installed at the 
Air Traffic Control System Command Center 
(ATCSCC) archives a rolling 45-day set of ETMS 
data.17 

The following data fields were extracted for each 
aircraft in the POET database:

• identification code,
• date of departure,
• airport code, 
• scheduled time of departure, 
• actual time of departure, 
• scheduled flight time, 
• actual flight time, 
• scheduled time of arrival, and 
• actual time of arrival. 

It should be noted that the scheduled time of departure 
in the POET database is an Out time filed by the airline 
approximately 30 to 120 minutes before departure, plus 
an estimated taxi time. The actual time of departure in 
the database is the Off time, which is the time the 
aircraft lifts off the runway.  The difference between the 
two is used as a measure of delay for the forecasting 
process.  A bias correction for the difference between 
the actual and scheduled times can always be applied to 
improve the accuracy of the schedule-based prediction 
method. 

4. Results

The data extracted from POET were analyzed to 
generate: tables that list the values of the delay metrics, 
described below, for the chosen ten airports for the 21 
day period; bar charts that describe various attributes of 
traffic as a function of days of the week; and models of 
departure delay, enroute delay and arrival delay 
distributions. 

Delay Statistics of Major Airports

The delay metrics were generated for a typical day by 
first averaging for a day of operations and then 
averaging the result over the 21 days. The average 
number of operations for any day is determined as:

m

n
f mi

i∑
≤≤= 1

1 (1)

where in  is the number of departures or arrivals on the 

i th day and m  is the number of days.

The average delay for a day of operations at a particular 
airport is: 

i

nj
ij

i n
i

∑
≤≤=∆ 1

,δ
(2)

with delay defined as:

ijsaij tt ,, )( −=δ (3)

Here, in  is the number of departures or arrivals on the 

i th day, st is the scheduled departure and at  is the 

actual departure time of the j th aircraft on the i th day. 

The average over the m number of days can now be 
computed as:

m
f mi

i∑
≤≤
∆

= 1
2 (4)

ƒ2 is an average delay over the number of aircraft and 
the number of days at a specific airport. 

A third measure, ƒ3, is the percentage of aircraft 
departing late and is defined as follows:

m

d
f mi

i∑
≤≤= 1

3 (5)

where the percentage of aircraft departing late on a 
single day is:

[ ]
i

nj
ij

i n
d i







>
=

∑
≤≤1

, 0100 δ
(6)

The expression enclosed in the square brackets,  [ ], is a 
logical expression. Following Iverson’s notation,18 the 
value is 1 if the expression is true and zero otherwise. 
The percentage of aircraft departing early can be 
determined by subtracting ƒ3 from 100.
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 The average amount of delay time for the aircraft that 
departed late is defined as:

m

l
f mi

i∑
≤≤= 1

4 (7)

where 

[ ]
i

nj
ijij

i p
l i

∑
≤≤

>
= 1

,, 0δδ
(8)

and the number of delayed aircraft is:

[ ]∑
≤≤

>=
inj

ijip
1

, 0δ (9)

Similarly, the average amount of early departure time, 
with respect to the scheduled time of departure, for 
aircraft that departed early is defined as:

m

e
f mi

i∑
≤≤= 1

5 (10)

where 

[ ]
i

nj
ijij

i q
e i

∑
≤≤

≤
= 1

,, 0δδ
(11)

and the number of aircraft that departed early is:

[ ]∑
≤≤

≤=
inj

ijiq
1

, 0δ (12)

The average amount of delay for each aircraft delayed 
fifteen minutes or more is defined as the ƒ6 measure:

m

g
f mi

i∑
≤≤= 1

6 (13)

with

[ ]
[ ]∑

∑
≤≤

≤≤
≥
≥

=

i

i

nj
ij

nj
ijij

ig

1
,

1
,,

15

15

δ
δδ

(14)

The average delay of those aircraft that had the 
minimum delay on each day is found as follows:

m

a
f mi

i∑
≤≤= 1

7 (15)

where

)(min ,
1

ij
nj

i
i

a δ
≤≤

= (16)

Similarly, the average delay of the aircraft that had the 
maximum delay on given days is defined to be:

m

b
f mi

i∑
≤≤= 1

8 (17)

and

)(max ,
1

ij
nj

i
i

b δ
≤≤

= (18)

Two additional metrics, ƒ9 and ƒ10, for the percentage of 
aircraft that had delays greater than 15 minutes and 45 
minutes are:

m

c
f mi

i∑
≤≤= 1

9 (19)

and 

m

h
f mi

i∑
≤≤= 1

10 (20)

where

[ ]
i

nj
ij

i n
c i

∑
≤≤

≥
= 1

, 15100 δ
(21)
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and

[ ]
i

nj
ij

i n
h i

∑
≤≤

≥
= 1

, 45100 δ
(22)

The metrics ƒ1 through ƒ10 were computed for the 
departures out of the ten airports listed in Table 1, and a 
short definition of each metric is available in Table 4. 
These results are tabulated in the appendix in Table A1. 
Similar results for the arrival delays for arrivals to the 
ten airports are given in the appendix, Table A2. Table 
5 summarizes the most important metrics: percentage of 
aircraft delayed more than 15 minutes (ƒ9), and average 
delay time of delayed aircraft (ƒ6).

Comparing the data in Table 5 with the historical 
statistics in Tables 2 and 3, it is seen that the average 
amount of delay for each aircraft delayed more than 
fifteen minutes (ƒ6) is lower than in Table 2. The 
percentage of aircraft experiencing more than fifteen 
minutes of arrival or departure delay (ƒ9) compares very 
well with the data in Table 3.  The data in Tables A1 
and A2 can also be used for ranking the ten airports in 
order of delay. Table 6 shows the rank based on the 

average departure delay, the percentage of aircraft 
departing late and the percentage of aircraft departing 
later than 15 minutes. Similar ranking is shown using 
arrival delays and percentage of aircraft arriving later 
than zero and 15 minutes. Each airport was ranked 
using the three parameters: ƒ2 (Eq. (4)), ƒ3 (Eq. (5)) and 
ƒ9 (Eq. (19)) independently, and the average rank was 
computed to assign the final rank shown in Table 6.  

Two of the mostly widely used and cited statistics in 
NAS system analysis are the percentage of aircraft 
delayed more than fifteen minutes (ƒ9) and the average 
delay time of these aircraft (ƒ6). This is because the 
FAA reports aircraft as delayed if they depart more than 
15 minutes late. Tables 7 and 8 show the percentage of 
aircraft that had departure delays, arrival delays, and 
enroute delays, and the average departure delays, 
arrival delays and enroute delays. The data in Table 7 
pertain to the departures from the ten airports. Thus, the 
departure delays are counted at these airports while the 
arrival delays are counted at the various destination 
airports that the departing aircraft flew to.  
Complementing this, Table 8 shows the data for aircraft 
that arrived at the ten airports. The arrival delay for 
these aircraft is counted at the ten airports while the 
departure delay is counted at the other airports from 
which these flights originated. The percentage of 
delayed aircraft is computed as a simple average:

[ ]
∑

∑ ∑
≤≤

≤≤ ≤≤
≥

=

mi
i

mi nj
ij

n
f i

1

1 1
,

11

15100 δ
(23)

and the average delay is computed as:

[ ]
[ ]∑ ∑

∑ ∑
≤≤ ≤≤

≤≤ ≤≤
≥
≥

=

mi nj
ij

mi
ij

nj
ij

i

if

1 1
,

1
,

1
,

12 15

15

δ
δδ

(24)

Table 6. Ranking of airports (1 most delayed and 
10 least).

Airport Departures Arrivals

LGA 1 9

EWR 2 7

JFK 3 1

BOS 4 3

ORD 5 2

DFW 6 10

ATL 7 8

SFO 8 5

LAX 9 4

STL 9 6

Table 5.  Percentage of aircraft delayed more than 15 
minutes and the average delay time (minutes) of those 
aircraft, separated by departures and arrivals.

Departures Arrivals

Delay (f6) Pcnt. Delayed (f9) Delay (f6) Pcnt. Delayed (f9)

ATL 30.79 15.37 31.03 13.01

BOS 31.24 15.85 32.09 18.36

DFW 31.33 14.96 30.21 9.86

EWR 33.15 13.48 32.39 14.47

JFK 38.77 18.44 31.18 26.41

LAX 27.82 11.11 29.65 18.47

LGA 32.93 12.38 30.46 12.66

ORD 33.09 19.36 34.25 18.56

SFO 33.85 16.81 32.31 17.61

STL 29.56 12.21 31.36 13.13

Table 4.  Summary of delay metric definitions.
f1 Avg. number of a/c that departed/arrived in a single day

f2 Avg. minutes of delay for a single a/c

f3 Pcnt. of a/c departing/arriving after the scheduled time

f4 Avg. minutes of delay for a/c defined by metric f3

f5 Avg. minutes of delay for a/c not defined by metric f3

f6 Avg. minutes of delay for a/c that are later than 15 min.

f7 Avg. minutes early of the earliest a/c on a given day

f8 Avg. minutes late of the latest a/c on a given day

f9 Pcnt. of a/c departing/arriving later than 15 min.

f10 Pcnt. of a/c departing/arriving later than 45 min.
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The departure delays, arrival delays and enroute delays 
in Tables 7 and 8 are determined following the 
definitions of ƒ11 and ƒ12 in Eqs. (23) and (24). These 
tables show that the arrival delay times are strongly 
correlated to the departure delay times. This data again 
indicates arrival delay is similar in magnitude to the 
departure delay. The data also show fewer aircraft are 
delayed enroute compared to departing or arriving 
aircraft.

In addition to the metrics discussed so far, the mean and 
standard deviation are important features of the delay 
distribution. The mean of the distribution is determined 
as:

∑
∑ ∑

≤≤

≤≤ ≤≤=

mi
i

mi nj
ij

n
f i

1

1 1
,

13

δ
(25)

and the standard deviation, assuming a normal 
distribution, is determined as:

( )

1
1

1 1

2
13,

14

−



−

=

∑
∑ ∑

≤≤

≤≤ ≤≤

mi
i

mi nj
ij

n

f

f i

δ
(26)

The mean and standard deviation of the departure, 
arrival and enroute delays are given in Tables 9 and 10. 
Table 9 shows the data for the departures from the ten 
airports while Table 10 shows the data for the arrivals 
to the ten airports. The departure delay means in both 
tables show a positive bias, suggesting congestion at the 
airports results in more late departures than early ones.  
These tables show a part of the departure delay is 
absorbed in the enroute phase, which results in a 
smaller arrival delay. On average, the standard 
deviation value of departure delays out of these airports 
is 16 minutes and for arrival delays into these airports is 
18 minutes.

Table 7.  Percentage of aircraft delayed more than 
fifteen minutes and length of delay (minutes), 
selected by departure airport.

Percent Delayed (f11) Mean Delay Time (f12)

Airport Dep. Arr. Enr. Dep. Arr. Enr.

ATL 16.76 14.24 1.44 30.55 30.99 24.10

BOS 16.90 17.40 4.27 31.58 31.80 26.53

DFW 16.09 15.55 2.87 31.36 30.92 22.39

EWR 14.29 16.15 9.45 31.57 32.28 26.99

JFK 19.12 19.65 6.52 35.52 35.81 27.73

LAX 12.07 17.02 5.23 26.77 26.31 22.46

LGA 13.44 12.29 4.02 31.70 32.27 27.14

ORD 19.93 18.22 4.00 34.38 34.70 21.59

SFO 17.66 22.66 7.94 32.76 31.77 21.94

STL 13.46 19.00 4.87 30.19 29.09 21.55

All 10 16.11 16.79 4.39 31.70 31.43 23.89

Table 8.  Percentage of aircraft delayed more than 
fifteen minutes and length of delay (minutes), 
selected by arrival.

Percent Delayed (f11) Mean Delay Time (f12)

Airport Dep. Arr. Enr. Dep. Arr. Enr.

ATL 12.04 14.06 3.08 30.86 29.94 23.40

BOS 14.05 19.41 7.54 31.77 30.83 25.00

DFW 10.71 10.75 2.38 30.66 29.56 19.83

EWR 11.85 15.67 5.79 31.87 31.64 25.54

JFK 16.82 28.26 16.44 32.17 30.53 26.40

LAX 16.19 20.09 3.16 30.70 29.25 22.68

LGA 13.69 13.60 2.13 30.88 30.64 20.01

ORD 15.22 18.58 5.95 33.49 34.05 26.37

SFO 19.30 18.27 4.95 31.10 32.16 25.96

STL 11.45 14.01 1.88 32.52 31.27 27.36

All 10 13.67 16.32 4.46 31.64 31.10 24.78

Table 9.  Mean and standard deviation of delays (in 
minutes), selected by departure airport.

Mean (f13) Standard Deviation (f14)

Airport Dep. Arr. Enr. Dep. Arr. Enr.

ATL 5.17 0.41 -4.75 14.96 17.05 8.63

BOS 4.02 -0.43 -4.33 16.03 20.56 13.23

DFW 3.89 1.20 -2.68 15.64 17.22 9.21

EWR 1.06 -0.29 -1.24 17.21 19.80 14.26

JFK 5.03 -2.94 -7.96 19.18 26.00 18.11

LAX 2.65 2.78 0.18 11.92 14.84 9.74

LGA 1.19 -4.09 -5.23 16.49 19.01 12.05

ORD 5.53 1.34 -4.25 18.34 20.76 11.03

SFO 5.29 4.87 -0.45 16.53 19.30 10.37

STL 3.13 4.85 1.78 14.10 15.99 8.33

All 10 3.91 1.06 -2.82 16.01 18.75 11.20

Table 10.  Mean and standard deviation of delays, 
selected by arrival airport.

Mean (f13) Standard Deviation (f14)

Airport Dep. Arr. Enr. Dep. Arr. Enr.

ATL 3.50 1.73 -1.76 13.36 15.73 8.74

BOS 2.67 1.93 -0.74 15.54 18.75 11.20

DFW 1.60 -0.80 -2.41 13.36 14.86 8.73

EWR 1.81 0.24 -1.56 14.70 18.29 11.07

JFK 4.19 5.86 1.64 16.56 20.33 15.08

LAX 4.84 3.59 -1.23 14.81 18.29 11.36

LGA 3.46 0.01 -3.44 14.37 16.94 9.19

ORD 3.27 2.52 -0.57 17.09 19.97 11.02

SFO 5.50 -0.35 -5.93 16.15 21.28 14.46

STL 1.67 2.34 0.73 14.74 16.15 7.52

All 10 3.14 1.59 -1.51 15.00 17.84 10.60



American Institute of Aeronautics and Astronautics
9

Overall Trends

In the previous section, traffic delay characteristics at
the ten airports were examined using several metrics. In 
this section the focus is on aggregate statistics derived 
from the complete dataset, which includes all the traffic 
from the ten airports over the 21-day period. 

Figure 4 shows the percentage of aircraft as a function 
of departure and arrival delays. For example, the first 
light colored bar shows the percentage of aircraft, out of 
all the aircraft that departed from the ten airports over 
the 21-day period, that had more than 10 minutes of 
delay. The first solid bar shows the percentage of 
arrivals that had more than 10 minutes of delay. Note 
that departure delays are computed at the ten airports 
while the arrival delays are computed elsewhere 
(destination airports). The second set of bars show the 
percentage of aircraft that had more than 15 minutes of 
delay and so on. Observe from the figure that a slightly 
greater percentage of aircraft encounter arrival delays 
than experience departure delays. This may be due to 
those aircraft that experienced departure delays, which 
propagate through to become arrival delays, and those 
small number that did not experience departure delays 
but were subject to enroute delays or terminal delays, 
becoming arrival delays. It should be noted that the 
difference between the percentages of delayed 
departures and arrivals is rather small (less than 2), 
implying that most of the delay originates before 
departure.

The average number of departures out of the ten 
airports as a function of the day of the week is shown in 
Fig. 5. To create the bar charts, the number of 
departures from the ten airports were summed up for 
one day of the week (for example, Wednesdays), and 
divided by the number of such days (number of 
Wednesdays in the 21-day dataset). The bar chart 
shows that traffic is less on Sundays, Wednesdays and 

Saturdays. It should however be noted that the 
difference between the minimum traffic on Sundays 
and the maximum traffic on Thursdays is only 9.8%.

For each day of the week in the 21-day dataset, all 
departures from the ten airports that were delayed by 
more than 15 minutes were used to generate the bar 
charts in Fig. 6. The average percentage of aircraft 
delayed by more than 15 minutes was found to be 
15.0%. This number agrees well with the average of the 
delayed departure percentages given in Table 3, and 
shows the variation from day to day is small. Observe 
that although the traffic volume is lower on Sundays 
(see: Fig. 5), the percentage of delayed aircraft in Fig. 6 
is higher on Sundays. This trend is reversed on 
Tuesdays.  A likely explanation for such a trend is the 
small variation in departures from day to day is not 
enough to reach a capacity threshold that will increase 
the number of delayed aircraft.

Of all the aircraft that experienced delays greater than 
15 minutes, their average delay is shown as a function 
of the day of the week in Fig. 7. It may be seen that the 
average delay is maximum on Wednesday, although the 
traffic is higher on Tuesdays and Thursdays. The 
variation in delay from day to day is small, and the 
average delay was found to be 32 minutes. 

Fig. 4  Percentage of departure aircraft as a function 
of their departure and arrival delays.

Fig. 5  Average number of departures as a function 
of day of week.

Fig. 6  Percentage of departures delayed by more 
than 15 minutes.
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The trends for aircraft originating at other airports and 
arriving at the ten chosen airports were found to be 
similar to those shown in Figs. 6 and 7. The average 
percentage of arrivals delayed by more than 15 minutes 
for any given day of week was found to be 16% 
(compared to 15% for departing aircraft in Fig. 6). The 
average arrival delay for these aircraft was found to be 
32 minutes, which is the same as that found for 
departing aircraft in Fig. 7.

Delay Modeling

Delay can be modeled by assuming it to be a random 
variable that follows a statistical distribution. It can also 
be modeled via an Autoregressive Moving Average 
(ARMA) model based on past observations of delay or 
by establishing correlations with respect to predictable 
quantities. For example, it may be possible to predict 
departure delay as a function of departure demand. 
Only the first approach of modeling delay using density 
functions is described in this paper.

 To model departure delay for probabilistic demand 
forecasting methods, density functions were created 
using departure and arrival data for the ten airports over 
the 21-day period. The density functions are defined at 
each delay time as the proportion of all aircraft that 
departed or arrived that number of minutes late or early. 
A Normal density function was then computed from the 
mean and standard deviation of the raw distribution, 
and a least squares error minimization was performed to 
improve the fit with respect to the actual density 
function. A Poisson density function was also computed 
and error with respect to the actual density function was 
minimized. A Poisson distribution was found to better 
model departure delays, while a Normal distribution 
modeled enroute and arrival delays better.

Figure 8 shows the density functions for departure 
delays, enroute delays and arrival delays for aircraft 
that departed from the ten airports. The departure 
delays are computed at the ten airports and the arrival 

delays are computed at their destination airports. 
Similar density functions are shown in Fig. 9 for all the 
aircraft that arrived at the ten airports. The arrival 
delays are computed at the ten airports while the 
departure delays are computed at the airports of origin. 
Observe that the density functions look similar in both 
the figures. Departure delay, enroute delay and arrival 
delay distributions at several individual airports were 
also found to be very similar to the average 
characteristics shown in Figs. 8 and 9. This suggests 
that the distributions plotted are representative of all 
airports, not just the ten in the study. 

The mean departure delay, enroute delay and arrival 
delay for departing aircraft (Fig. 8) were (a) 3.91 
minutes, (b) -2.83 minutes and (c) 1.06 minutes. The 
mean departure, enroute and arrival delays for arriving 
aircraft (Fig. 9) were (a) 3.14 minutes, (b) -1.51 
minutes and (c) 1.59 minutes. It should be noted that 
the average arrival delay is approximately the sum of 
the average departure and enroute delays. Observe that 
the arrival delay density function is diffuse compared to 
the departure and enroute delay density functions.

Fig. 7  Average departure delay for aircraft delayed by 
more than 15 minutes.

Fig. 8  Density functions for departing aircraft.

Fig. 9  Density functions for arriving aircraft.
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To model the departure distribution in Fig. 8a, a 
Normal distribution is assumed. The equation for this 
distribution is:
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where µ is the mean of the distribution and σ is the 
standard deviation.  The mean of the departure 
distribution in Fig. 8 is 3.91 minutes and the standard 
deviation is 16 minutes; however the raw departure 
density function and the Normal density function with 
the same mean and standard deviation do not coincide. 

To improve the delay model one can adjust the standard 
deviation and the mean by computing a perturbation 
about the nominal distribution as follows. Let the mean 
and the standard deviation of the nominal Normal 
distribution be µ  and σ . The perturbation equation 

can be obtained in terms of the nominal mean and 
standard deviation as:
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where dP is the error between the Normal density 
function and the raw density function at each delay time 
instant. Since an equation of the form given in Eq. (28) 
can be set up at each sampling instant, dµ and dσ can 
be computed using the Least Squares method. For the 
given data-set, dµ and dσ were found to be -5.45 
minutes and -5.52 minutes. These corrections resulted 
in the mean of -1.54 minutes and standard deviation of 

10.49 minutes. The resulting Normal distribution is 
shown in of Fig. 10. The improvement in fit error, 
measured as the sum of the squares of the errors, is 71% 
compared to the nominal Normal distribution. 

To determine if another model would better fit the data, 
a Poisson distribution model is examined next. If a 
random variable X  has a Poisson distribution, its 
density function )( xXP =  is:

!
)(
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e
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where the mean 0>µ .19 The Poisson density function 

is plotted along with the raw departure density function 
in Fig. 11a.

To improve the error with respect to the raw 
distribution, the mean µ can be adjusted by using the 
Least Squares method. Let µ  be the mean delay 

derived from the data. The correction to the mean can 
be computed in terms of the perturbation about the 
nominal Poisson distribution as:
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With dP as the error between the Poisson density 
function and the raw density function at each discrete 
delay time instant, the Least Squares solution resulted 
in dµ of -3.98 minutes. Adding this correction to the 
nominal mean of 3.91 minutes resulted in -0.07 
minutes. (The condition forbidding a negative mean can 
be avoided by a simple shift in the domain.) The 
density function using a Poisson model with this value 
of the mean is shown in Fig. 11b. The best-fit Poisson 
distribution (Fig. 11) shows an improvement 38% over 

Fig. 10  Least Square Normal distribution model
for departure delays.

Fig. 11 Departure delay modeled using Poisson
distributions. 
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the best-fit Normal distribution model (Fig. 10). The fit 
error is measured as the sum of the squares of the errors 
of all the samples. In conclusion, the Poisson 
distribution model describes the departure delay 
distribution more accurately than the Normal 
distribution model.

Enroute delay data, shown in Fig. 8, were also modeled 
using Normal and Poisson density functions. Figure 12 
shows the Normal density function obtained by using 
the Least Squares technique using Eq. (28). The mean 
and the standard deviation values of -2.82 minutes and 
11.20 minutes of the nominal Normal distribution were 
corrected by 0.36 minutes and -3.82 minutes which 
resulted in the mean and standard deviation values of -
2.46 minutes and 7.38 minutes. The best-fit Normal 
density function reduced the fit error by 83% compared 
to that obtained using the nominal Normal density 
function. The best-fit Poisson density function could 
only lower the error by 53% compared to that obtained 
using the nominal Normal density function. Thus, the 
enroute delay distribution was modeled best by the 
Normal distribution.

The arrival delay data, shown in Fig. 8, were modeled 
using the Normal density function and the Poisson 
density function. Best-fit was achieved with the Normal 
density function, as shown in Fig. 13, using the 
distribution whose mean and standard deviation were 
adjusted through Eq. (28).

The mean and standard deviation of the nominal 
Normal distribution were 1.06 minutes and 18.74 
minutes. Error minimization with respect to the raw 
arrival delay density function using the Least Squares 
method resulted in corrections of  -3.79 minutes to the 
mean and -4.99 minutes to the standard deviation. The 
adjusted Normal distribution shown in Fig. 13 (LSQ 
Normal) has a mean of –2.73 minutes and a standard 

deviation of 13.75 minutes. The best-fit Normal 
distribution reduced the fit error by 78% compared to 
the nominal Normal distribution.

Using Normal distribution models for the data in Fig. 8 
shows that the standard deviation of enroute delay (7.38 
minutes) is smaller than the standard deviation of 
departure delay (10.49 minutes), which is smaller than 
the standard deviation of arrival delay (13.75 minutes).  

Similar results were also obtained for data shown in 
Fig. 9. Modeling of the departure delay density function 
using Normal and Poisson distributions revealed that a 
better fit is obtained using a Poisson distribution. The 
improvement in fit-error is 12% over modeling with the 
Normal density function. Best-fit solutions for enroute 
delay and arrival delay modeling were obtained using 
Normal density functions. 

5. Conclusions

This paper was devoted to the analysis of departure, 
enroute and arrival delays of aircraft that operated out 
of one of ten major U.S. hub airports with the objective 
of improving delay prediction. To put the results in 
perspective, historical delay data for these airports from 
past studies were summarized. Causal factors for the 
delays related to aircraft, airline operations, change of 
procedures and traffic volume were identified.  All the 
results of delay analysis were based on traffic data 
derived from the Post Operations Evaluation Tool 
(POET) database for the ten airports in a 21-day period. 
Delay metrics, described in the paper, were computed 
for a typical day by first averaging for a day of 
operations and then averaging the result over the 21 
days. The numerical results for the average duration of 
departure delay were found to be smaller than the 
historical delays, but the percentage of aircraft that 
experience departure or arrival delays was found to be 
in good agreement with the historical trends. The delay 

Fig. 13  Arrival delay modeled using a Normal 
distribution.

Fig.  12 Enroute delay modeled using a Normal
distribution.
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metrics were also used to rank the ten airports. LGA 
was ranked worst in departure delays while JFK ranked 
worst in arrival delays. The next two most delayed for 
departures were EWR and JFK, and for arrivals ORD 
and BOS. In addition to the delay characteristics of 
individual airports, aggregate statistics were derived 
from the complete dataset and presented as functions of 
the days of the week. It was shown that the percentage 
of aircraft delayed more than the FAA standard of 15 
minutes was in agreement with the historical data.  A 
small amount of variation was seen in the average 
number of departures, percentage of delayed departures 
and average departure delay (for the delayed aircraft) as 
a function of the day of the week. Stochastic modeling 
of delays was attempted by creating probability density 
functions using all the data over the 21-day period. The 
density functions were modeled using Normal and 
Poisson distributions based on the mean and standard 
deviations derived from the raw data, and were then 
improved by adjusting the mean and standard deviation 
values via a Least Squares method. It was shown that 
departure delay is modeled better using a Poisson 
distribution while the enroute and arrival delays are 
modeled better using Normal distributions. These 
models can be used to improve the accuracy of 
probabilistic departure time or sector arrival time 
forecasts.
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Appendix

Table A1.  Basic metrics for all aircraft that departed from the specified 
airports.
Departures f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

ATL 1033 5.06 55.83 13.18 -5.29 30.79 -72.38 114.57 15.37 2.72

BOS 425 3.84 49.73 14.34 -6.86 31.24 -91.17 88.05 15.85 3.00

DFW 890 3.85 48.69 14.10 -6.02 31.33 -42.62 125.29 14.96 2.62

EWR 430 1.28 43.82 14.75 -9.33 33.15 -56.98 129.69 13.48 2.59

JFK 254 5.85 49.42 18.98 -7.21 38.77 -42.67 168.10 18.44 5.05

LAX 727 2.57 48.83 10.73 -5.31 27.82 -101.17 112.95 11.11 0.93

LGA 390 1.34 43.37 14.22 -8.58 32.93 -51.29 118.00 12.38 2.34

ORD 1063 6.08 50.57 17.11 -6.60 33.09 -147.57 122.81 19.36 5.05

SFO 336 5.61 53.93 14.93 -5.50 33.85 -45.95 129.19 16.81 3.62

STL 509 3.16 47.21 12.39 -5.60 29.56 -50.57 101.00 12.21 2.12

Table A2.  Basic metrics for all aircraft that arrived at the specified 
airports.
Arrivals f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

ATL 973 1.67 45.78 13.46 -8.46 31.03 -189.62 167.69 13.01 2.25

BOS 424 1.86 46.05 17.29 -11.48 32.09 -134.60 178.19 18.36 2.97

DFW 830 -0.91 37.97 12.45 -9.10 30.21 -99.31 124.29 9.86 1.48

EWR 424 0.07 41.86 16.09 -11.52 32.39 -146.69 129.40 14.47 2.66

JFK 262 4.47 55.87 18.95 -13.85 31.18 -233.29 100.86 26.41 4.09

LAX 670 3.24 53.54 15.41 -10.96 29.65 -238.83 123.81 18.47 2.65

LGA 378 -0.08 42.03 13.99 -10.51 30.46 -108.90 95.57 12.66 2.13

ORD 1075 3.75 45.64 18.56 -10.62 34.25 -197.71 157.81 18.56 4.70

SFO 355 -0.27 42.09 17.63 -13.43 32.31 -88.33 96.33 17.61 3.49

STL 533 2.41 47.71 13.59 -8.25 31.36 -137.62 138.00 13.13 2.63
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